Carboidratos
Os carboidratos (também chamados sacarídeos, glicídios, oses, hidratos de carbono ou açúcares), são definidos, quimicamente, como poli-hidróxi-cetonas (cetoses) ou poli-hidróxi-aldeídos (aldoses), ou seja, compostos orgânicos com, pelo menos três carbonos onde todos os carbonos possuem uma hidroxila, com exceção de um, que possui a carbonila primária (grupamento aldeídico) ou a carbonila secundária (grupamento cetônico). Possuem fórmula empírica Cn(H2O)m desde os mais simples (os monossacarídeos, onde n = m) até os maiores (com peso molecular de até milhões de daltons)
Os carboidratos mais simples são denominados monossacarídeos, possuindo pelo menos um átomo de carbono assimétrico que caracteriza a região denominada centro quiral, pois fornece isômeros ópticos. Possuem de 3 a 8 carbonos, sendo denominado, respectivamente, trioses, tetroses, pentoses, hexoses, heptoses e octoses.
Os monossacarídeos de ocorrência natural mais comum, como a ribose (5C), glicose (6C), frutose (6C) e manose (6C), existem como hemiacetais de cadeia cíclica (e não na forma linear), quer na formas de furanose (um anel de 5 elementos, menos estável) ou de piranose (um anel de 6 elementos, mais estável).
Esta forma cíclica (hemiacetal) resulta da reação intramolecular entre o grupamento funcional (C1 nas aldoses e C2 nas cetoses) e um dos carbonos hidroxilados do restante da molécula (C4 na furanose e C5 na piranose), ocorrendo nas formas isoméricas? ?e (cis ou trans), conforme a posição da hidroxila do C2 em relação à hidroxila do C1. Tais formas são interconvertidas através do fenômeno da mutarrotação.
Os carboidratos formam compostos pela união de duas ou mais moléculas de monossacarídeos, sendo classificados como DISSACARÍDEOS, OLIGOSSACARÍDEOS e POLISSACARÍDEOS. Nesses compostos, quando o carbono C1 apresenta a hidroxila livre (ou seja, não está formando ligação entre os monossacarídeos) o carboidrato apresenta poder redutor quando aquecido. Esta característica é utilizada, freqüentemente, em reações de identificação.
Monossacarídeos
São os carboidratos mais simples, dos quais derivam todas as outras classes.
Quimicamente --> São polihidroxialdeídos (ou aldoses) - ou polihidroxicetonas (ou cetoses), sendo os mais simples monossacarídeos compostos com no mínimo 3 carbonos:
- O Gliceraldeído
- A Dihidroxicetona
Feita exceção à dihidroxicetona, todos os outros monossacarídeos - e por extensão, todos os outros carboidratos - possuem centros de assimetria (ou quirais), e fazem isomeria óptica. A classificação dos monossacarídeos também pode ser baseada no número de carbonos de suas moléculas; assim sendo, as TRIOSES são os monossacarídeos mais simples, seguidos das TETROSES, PENTOSES, HEXOSES, HEPTOSES, etc.
Destes, os mais importantes são as Pentoses e as Hexoses.
As pentoses mais importantes são:
- A Dihidroxicetona
Feita exceção à dihidroxicetona, todos os outros monossacarídeos - e por extensão, todos os outros carboidratos - possuem centros de assimetria (ou quirais), e fazem isomeria óptica. A classificação dos monossacarídeos também pode ser baseada no número de carbonos de suas moléculas; assim sendo, as TRIOSES são os monossacarídeos mais simples, seguidos das TETROSES, PENTOSES, HEXOSES, HEPTOSES, etc.
Destes, os mais importantes são as Pentoses e as Hexoses.
As pentoses mais importantes são:
- Ribose
- Arabinose
- Xilose
As hexoses mais importantes são:
- Glicose
- Galactose
- Manose
- Frutose
Monossacarídeos em Solução Aquosa
Os monossacarídeos em solução aquosa estão presentes na sua forma aberta em uma proporção de apenas 0,02%.
O restante das moléculas está ciclizada na forma de um anel hemiacetal de 5 ou de 6 vértices.
O anel de 5 vértices é chamado de anel furanosídico.
O anel de 6 vértices é chamado de anel piranosídico.
Na estrutura do anel, o carbono onde ocorre a formação do hemiacetal é denominado "Carbono Anomérico", e sua hidroxila pode assumir 2 formas:
- Alfa --> Quando ela fica para baixo do plano do anel
- Beta --> Quando ela fica para cima do plano do anel
A interconversão entre estas formas é dinâmica e denomina-se Mutarrotação
Metabolismo
Após a absorção dos carboidratos nos intestinos, a veia porta hepática fornece ao fígado uma quantidade enorme de glicose que vai ser liberada para o sangue e suprir as necessidades energéticas de todas as células do organismo.
As concentrações normais de glicose plasmática (glicemia) situam-se em torno de 70 - 110 mg/dl, sendo que situações de hipergicemia tornam o sangue concentrado alterando os mecanismos de troca da água do LIC com o LEC, além de ter efeitos degenerativos no SNC. Sendo assim, um sistema hormonal apurado entra em ação para evitar que o aporte sangüíneo de glicose exceda os limites de normalidade.
Os hormônios pancreáticos insulina e glucagon possuem ação regulatória sobre a glicemia plasmática. Não são os únicos envolvidos no metabolismo dos carboidratos (os hormônios sexuais, epinefrina, glicocorticóides, tireoidianos, GH e outros também têm influenciam a glicemia), porém, sem dúvida, são os mais importantes.
A insulina é produzida nas células ? das ilhotas de Langerhans e é armazenada em vesículas do Aparelho e Golgi em uma forma inativa (pró-insulina). Nessas células existem receptores celulares que detectam níveis de glicose plasmáticos (hiperglicemia) após uma alimentação rica em carboidratos. Há a ativação da insulina com a retirada do peptídeo C de ligação, com a liberação da insulina na circulação sangüínea. Como efeito imediato, a insulina possui três efeitos principais:
1. Estimula a captação de glicose pelas células (com exceção dos neurônios e hepatócitos);
2. Estimula o armazenamento de glicogênio hepático e muscular (glicogênese)
3. Estimula o armazenamento de aminoácidos (fígado e músculos) e ácidos graxos (adipócitos).
Como resultado dessas ações, há a queda gradual da glicemia (hipoglicemia) que estimula as células ?-pancreáticas a liberar o glucagon. Este hormônio possui ação antagônica à insulina, com três efeitos básicos:
1. Estimula a mobilização dos depósitos de aminoácidos e ácidos graxos;
2. Estimula a glicogenólise
3. Estimula a neoglicogênse.
Esses efeitos hiperglicemiantes possibilitam nova ação insulínica, o que deixa a glicemia de um indivíduo normal em torno dos níveis normais de 70 - 110 mg/dl.
A captação de glicose pela célula se dá pelo encaixe da insulina com o receptor celular para insulina. Esse complexo sofre endocitose, permitindo a entrada de glicose, eletrólitos e água para a célula; a glicose é metabolizada (através da glicólise e Ciclo de Krebs), a insulina degradada por enzimas intracelulares e o receptor é regenerado, reiniciando o processo.
Quanto mais complexo insulina/receptor é endocitado, mais glicose entra na célula, até que o plasma fique hipoglicêmico. Esta hipoglicemia, entretanto, não é imediata, pois a regeneração do receptor é limitante da entrada de glicose na célula, de forma a possibilitar somente a quantidade de glicose necessária evitando, assim, o excesso glicose intracelular.
Nos músculos, a glicose em excesso é convertida em glicogênio, assim como a glicose que retorna ao fígado.
A grande maioria das células do organismo é dependente da insulina para captar glicose (o neurônio e os hepatócitos são exceções, pois não tem receptores para insulina, sendo a glicose absorvidos por difusão).
A deficiência na produção ou ausência total de insulina ou dos receptores caracteriza uma das doenças metabólicas mais comuns: o diabetes mellitus.
Representação esquemática da captação de glicose. A) a insulina é liberada pelo estímulo hiperglicêmico e forma um complexo insulina/receptor. B) a célula endocita o complexo e possibilita a entrada de glicose para ser metabolizada. C) O receptor é regenerado, a insulina degradada intracelularmente e o processo reinicia levando a queda da glicemia plasmática.
Responsável: Evania Alves
Nenhum comentário:
Postar um comentário